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Abstract The two decades old high order central differencing via entropy
splitting and summation-by-parts (SBP) difference boundary closure of Ols-
son & Oliger (1994), Gerritsen & Olsson (1996), and Yee et al. (2000) is
revisited. The entropy splitting is a form of skew-symmetric splitting of the
nonlinear Euler flux derivatives. Central differencing applied to the entropy
splitting form of the Euler flux derivatives together with SBP difference op-
erators will, hereafter, be referred to as entropy split schemes. This study is
prompted by the recent growing interest in numerical methods for which a
discrete entropy conservation law holds, a discrete global entropy conserva-
tion can be proved and/or the numerical method possesses a stable entropy
in the framework of SBP difference operators and L2-energy norm estimate.
The objective of this paper is to recast the entropy split scheme as the re-
cent definition of an entropy stable method for central differencing with SBP
operators for both periodic and non-periodic boundary conditions for non-
linear Euler equations. Standard high order spatial central differencing as
well as high order central spatial DRP (dispersion relation preserving) spa-
tial differencing is part of the entropy stable methodology framework. Long
time integration of 2D and 3D test cases is included to show the compari-
son of this efficient entropy stable method with the Tadmor-type of entropy
conservative methods. Studies also include the comparison among the three
skew-symmetric splittings on their nonlinear stability and accuracy perfor-
mance without added numerical dissipations for smooth flows. These are,
namely, entropy splitting, Ducros et al. splitting and the Kennedy & Grub-
ber splitting.

Björn Sjögreen
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1 Introduction and objectives

Recently there has been growing interest in numerical methods for which a
discrete entropy conservation law holds, a discrete global entropy conserva-
tion can be proved, and/or the numerical method possesses a stable entropy in
the framework of summation-by-parts (SBP) and L2-energy norm estimate.
These growing research topics recently attracted, in particular, the discontin-
uous Galerkin method development community. See [6, 2] and references cited
therein for some related development. Their focus is on the Tadmor-type of
entropy conservative and or entropy stable methods [29, 30, 31]. See Ranocha
for an overview [17]. For the Tadmor-type entropy stable methods develop-
ment, often diffusive numerical dissipation terms (e.g., entropy viscosity) are
needed to prove stability.

One of the reasons for interest in stable entropy numerical methods is the
advantage of improving nonlinear stability and accuracy of simulations for
nonlinear fluid flow problems. The improved nonlinear stability in turn would
help minimize the used of added numerical dissipation and thus improve nu-
merical accuracy. As discussed in [17], this is still a topic that needs further
research. Our main interest here is focused on improving nonlinear stability of
long time integration of shock-free turbulence and turbulence with shocks for
the gas dynamics and the MHD equations. Nonlinearly stable methods that
are suitable for rapidly developing or for shorter time integration of fluid flows
might still be suffering from nonlinear instability for longer time integration
of, e.g., shock-free turbulence and turbulence with shocks computations. In
the direct numerical simulations (DNS) and large eddy simulations (LES) re-
search circle, reducing aliasing errors based mainly on the linearized approach
has been developed to improve nonlinear stability of long time integration of
DNS and LES computations.

In this article the two decades old high order central differencing via en-
tropy splitting and SBP difference closure of Olsson & Oliger (1994), Gerrit-
sen & Olsson (1996), and Yee et al. (2000) [15, 7, 37] is revisited. This is an
expanded version of a short proceedings paper reported in [26]. The entropy
splitting is a form of skew-symmetric splitting of the nonlinear Euler flux
derivatives. Central differencing applied to the entropy splitting form of the
Euler flux derivatives together with SBP difference operators will, hereafter,
be referred to as entropy split schemes. Here we recast the entropy split
scheme as the recent definition of an entropy stable method for central dif-
ferencing with SBP operators for both periodic and non-periodic boundary
conditions for nonlinear Euler equations. An entropy split scheme satisfies
the L2-energy norm estimate readily without an added numerical dissipation
term for smooth flows. Standard high order spatial central differencing as well
as high order central spatial DRP (dispersion relation preserving) spatial dif-
ferencing is part of the entropy stable methodology. For flows containing
discontinuities the Yee et al. nonlinear filter approach [36, 37, 38, 39, 25, 24]
is employed at isolated computed locations, after each full time step of the
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entropy split method to suppress spurious oscillations while maintaining ac-
curacy on the remaining flow field. Since the nonlinear filter step is executed
as a Euler time discretization at isolated location after the completion of full
time step of the entropy stable central scheme, entropy conservation/stability
is valid almost everywhere.

The first objective of this paper is a revisit to show in the current popular
definition of entropy stability based on the L2 norm that entropy splitting us-
ing the physical entropy for central schemes with SBP operators are entropy
stable. Standard high order spatial central differencing as well as high order
central spatial DRP spatial differencing are included in the numerical stud-
ies. The second objective is to illustrate the efficiency and performance of the
split schemes with the more CPU intensive Tadmor-type entropy conserving
methods. 2D and 3D long time integration of smooth flows, shock-free tur-
bulence and turbulence with shocklets are included. Comparisons among the
three skew-symmetric splittings (entropy splitting [37], Ducros et al. splitting
[3] and the Kennedy & Grubber splitting [12]) on their nonlinear stability and
accuracy performance without added numerical dissipations for smooth flows
is included. Entropy split methods are defined for a family of entropies that
depend on a parameter, β. The influence of β on accuracy and stability of
the resulting numerical method was briefly studied in [37, 27]. Here, the third
objective is to show the influence of β for two 3D DNS test cases. Further-
more, since the entropy split methods are not in conservative form, another
goal of the current study is to investigate how these methods perform on the
same two 3D turbulent test cases with and without discontinuities.

2 Preliminaries

Consider the system of conservation laws

qt + fx = 0, (1)

with flux function f(q). A convex function E(q) is an entropy for (1) if the
additional conservation law

Et + Fx = 0, (2)

where F is the entropy flux, can be derived from (1) under smoothness as-
sumptions. It is well-known that the existence of an entropy is equivalent
with existence of a symmetrizing change of variables given by the entropy
variables v = Eq; see [8] and references therein.

Now consider the conservation law (1) as the nonlinear Euler equations
for a perfect gas, thermally perfect gas or a linear combination of perfect
gases. The entropy split methods for the Euler equations by Olsson & Oliger
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(1994), Gerritsen & Olsson (1996), and Yee et al. (2000) [15, 7, 37] that con-
serve the global entropy were developed in the 90’s but have received less
attention in recent years. As indicated in Olsson & Oliger (1994), Gerritsen
& Olsson (1996), and Yee et al. (2000, for central spatial differencing, entropy
split schemes are simple to define. All that is needed is to replace the spatial
derivatives by summation-by-parts (SBP) difference operators in the entropy
split form of the equations. The numerical boundary closure follows directly
from the SBP operator. No additional numerical boundary procedure is re-
quired. In contrast, Tadmor-type entropy conserving schemes [30], and more
recently in [35], do not naturally come with a numerical boundary closure. A
generalized SBP operator has to be developed [18]. These boundary operators
have been developed for Tadmor-type entropy conservative schemes; see [16].
They are more complicated to define and implement. The next section will
briefly summarize the Olsson & Oliger (1994), Gerritsen & Olsson (1996),
and Yee et al. (2000) work first before showing their entropy split schemes
are entropy stable.

2.1 Remarks

Remark I: It is noted that the Hughes et al. formulation [9] using the
Harten’s idea [8] but solving the flow equations in nonconservative form in
terms of the entropy variables is completely different from the entropy split
schemes. The entropy split scheme solve the entropy splitting form of the Eu-
ler flux derivatives consisting of a one parameter family of conservative and a
non-conservative portions in terms of the entropy variables. If the parameter
satisfies the energy estimate, entropy stability is immediate.
Remark II: The entropy split scheme has been generalized from perfect gas
to thermally perfect gas and gas flows consist of linear combination of perfect
gases [34, 37]. In addition, these high order schemes has been formulated in
time varying deforming curvilinear grids with free-stream preservation [34,
21].

2.2 Some Terminology

In order to clarify some of the terminology we include some definitions that
will be used in the following section. A method for solving the equations of gas
dynamics is globally entropy conservative if the computed solution satisfies

∆x
d

dt

N∑
j=1

Ej(t) = 0 (3)
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with periodic boundary conditions, or with boundary conditions

∆x
d

dt

N∑
j=1

ωjEj(t) + FN − F1 = 0, (4)

where Fj is the entropy flux at point xj , and ωj are quadrature weights. F1

and FN are the two end points value of the entropy flux.
The term “entropy consistency” is sometimes used for “entropy conserva-

tion”. A method for solving the gas dynamics equations is entropy dissipative,
or “entropy stable”, if the computed solution satisfies (3) or (4) with inequal-
ity,

∆x
d

dt

N∑
j=1

Ej(t) ≤ 0,

or

∆x
d

dt

N∑
j=1

ωjEj(t) + FN − F1 ≤ 0. (5)

A method for solving the gas dynamics equations is locally entropy con-
servative if there exists a numerical entropy flux function Hj+1/2 such that
the computed solution satisfies a relation

d

dt
Ej(t) +

1

∆x
(Hj+1/2 −Hj−1/2) = 0, j = 1, . . . , N. (6)

3 Entropy of Gas dynamics Equations

We consider the 3D equations of inviscid compressible gas dynamics

qt + fx + gx + hx = 0

with conserved variables

q = (ρ ρu ρv ρw e)T

and fluxes in an arbitrary direction k = (k1 k2 k3) with |k|2 = 1, and

f̂ = k1f + k2g + k3h = (ρû ρuû+ k1p ρvû+ k2p ρwû+ k3p û(e+ p))T , (7)

where û = k1u+ k2v + k3w. The total energy is related to the pressure p by
the ideal gas law,

e =
p

γ − 1
+

1

2
ρ|u|2,

where γ > 1 is a given constant, and |u|2 = u2 + v2 + w2.
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An entropy is a convex function, E(q), of the conserved variables that
allows an additional conservation law,

Et + Fx +Gy +Hz = 0, (8)

when the solution is smooth. The entropy fluxes in the x-, y-, and z-directions
are denoted by F , G, and H, respectively. The entropy variables are defined
by v = ∇qE (the notation Eq for the gradient will sometimes be used). The
convexity of E ensures that these are well-defined. The Entropy conservation
law (8) follows if the relation

vT
∂f

∂q
= ∇qF

for the x-direction fluxes, and similarly for the y- and z-directions, holds.
Moreover, the entropy variables symmetrize the equations; ∂f/∂v is a sym-
metric matrix.

A. Harten [8] considered the class of entropies

E = −γ + α

γ − 1
ρ(pρ−γ)

1
α+γ , (9)

where α is a parameter. To ensure that E is convex, i.e., that the matrix Eq,q

is positive definite, α is required to satisfy α > 0 or α < −γ. The full range
for α was given in [37], while [8] only considered α > 0, and [7] used only the
special case α = 1− 2γ from α < −γ.

The corresponding entropy flux in the direction k = (k1 k2 k3)T is

F = ûE.

The entropy variables v = Eq are straightforwardly found to be

v =
ρ

p
s

1
α+γ (− α

γ − 1

p

ρ
− 1

2
|u|2 u v w − 1)T , (10)

where s denotes pρ−γ . The entropy split discretization relies on the homo-
geneity property given in the following lemma.

Lemma 1. The conserved variables are homogeneous functions of the entropy
variables (10),

q(θv) = θβq(v), (11)

where β = (α+ γ)/(1− γ). From (11) it follows that

qvv = βq (12)

f̂vv = β f̂ . (13)

Proof. To prove (11), first note that
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u = −v2/v5 v = −v3/v5 w = −v4/v5,

and, hence, that the velocities (u, v, w) are invariant under the scaling θv.
Rewriting the first entropy variable as

v1 = v5(
α

γ − 1

p

ρ
+

1

2
|u|2)

shows that p/ρ is invariant under the scaling θv as well. This invariance
together with the definition of v5 now give that

s
1

α+γ (θv) = θs
1

α+γ (v). (14)

It holds that
s

1
α+γ = (pρ−γ)

1
α+γ = (

p

ρ
)

1
α+γ (ρ1−γ)

1
α+γ .

Because p/ρ is invariant, (14) gives

ρ
1−γ
α+γ (θv) = θρ

1−γ
α+γ (v),

which means that
ρ(θv) = θ

α+γ
1−γ ρ(v).

By defining β = α+γ
1−γ , the conclusion ρ(θv) = θβρ(v) follows. Because u, v, w,

and p/ρ are invariant, the conserved variables scale in the same way as ρ,
thereby proving (11). The flux homogeneity follows from the homogeneity of

the Euler fluxes in conserved variables, f̂(θq) = θf̂ , and from (11) by

f̂(θv) = f̂(q(θv)) = f̂(θβq(v)) = θβ f̂(q(v)) = θβ f̂(v). (15)

The relations (12) and (13) are obtained by differentiating (11) and (15) with
respect to θ and setting θ = 1.

Remark: The range of α, where Eq,q is positive definite, translates to β
satisfying

β < − γ

γ − 1
or β > 0.

The entropy splitting described in the next section weights the non-
conservative portion of the flux derivative by 1

1+β . This means that the range
β > 0 corresponds to a weight that is less than 1, whereas negative β leads,
unphysically, to a weight that is greater than 1.
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4 Entropy splitting of the Euler flux derivative

This section reviews some of the results from Gerritsen & Olsson and Yee et
al. [7, 37]. Consider the one dimensional gas dynamics equations on a < x < b,

qt + fx = 0. (16)

The flux derivative is written as a weighted sum of a conservative part, fx,
and a non-conservative part, fvvx, as

fx =
β

β + 1
fx +

1

β + 1
fvvx.

Replacing fx in (16) by this split flux derivative gives

qt +
β

β + 1
fx +

1

β + 1
fvvx = 0. (17)

Equation (17) is the entropy split form of (16). Introduce the scalar product

(u,v) =

∫ b

a

uTv dx.

The time derivative of the global entropy over a < x < b becomes

d

dt

∫ b

a

E(q) dx = (v,qt) = − β

β + 1
(v, fx)− 1

β + 1
(v, fvvx) =

β

β + 1
(vx, f)−

β

β + 1
(v(b, t)T f(b, t)− v(a, t)T f(a, t))− 1

β + 1
(fvv,vx) (18)

where we used integration-by-parts on the β/(β+1)-term, and the symmetry
of fv on the 1/(β + 1)-term. The flux homogeneity (13) eliminates all terms
except the boundary contributions,

d

dt

∫ b

a

E(q) dx = − β

β + 1

(
v(b, t)T f(b, t)− v(a, t)T f(a, t)

)
. (19)

This is an entropy balance law, because

β

β + 1
vT f = F, (20)

so that the right hand side of (19) is just the difference of entropy fluxes
across the boundaries x = a and x = b.

Equation (20) can be proved by direct evaluation using (7) and (10). This
leads to



Title Suppressed Due to Excessive Length 9

vT f =
ρ

p
s

1
α+γ (−α+ 1

γ − 1
ûp) = −α+ 1

γ − 1
ρûs

1
α+γ .

From the definition of β it holds that

β

β + 1
=
α+ γ

α+ 1
.

Hence,

β

β + 1
vT f = −α+ γ

α+ 1
· α+ 1

γ − 1
ρûs

1
α+γ = − α+ γ

γ − 1
ρûs

1
α+γ = ûE = F.

The global entropy conservation (19) can be rewritten as an L2-like esti-
mate. The following result was given in [7].

Lemma 2. The entropy time derivative can be rewritten as

d

dt
E(q) =

1

β + 1

d

dt
(vT (Eq,q)−1v)

by using the homogeneity (11).

Proof. By definition v = Eq and vq = Eq,q, which means that

qv = (Eq,q)−1.

Using this and the homogeneity (11) gives

E(q)t = vTqt = vT (Eq,q)−1vt =

(vT (Eq,q)−1v)t − (vT (Eq,q)−1)tv = (vT (Eq,q)−1v)t − βqTt v (21)

so that
(β + 1)vTqt = (vT (Eq,q)−1v)t,

which proves the Lemma.

With the help of Lemma 2, (19) can be written

d

dt
(v, (Eq,q)−1v) = −β

(
v(b, t)T f(b, t)− v(a, t)T f(a, t)

)
or, equivalently, by use of (13),

d

dt
(v, (Eq,q)−1v) = −

(
v(b, t)T fvv(b, t)− v(a, t)T fvv(a, t)

)
. (22)

Note that the left hand side is not an L2-norm, since the matrix E−1q,q depends
on v. It is necessary to bound the eigenvalues of E−1q,q in order to make (22)
a valid estimate.
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5 Semi-discrete entropy split discretization of the Euler
equations

Consider the 1D compressible gas dynamic equations (16) discretized on a
domain a < x < b by a uniform grid xj = (j − 1)∆x + a, j = 1, . . . , N , and
grid spacing ∆x = (b − a)/(N − 1). Define the semi-discrete entropy split
approximation

d

dt
qj +

β

β + 1
Dfj +

1

β + 1
(fv)jDvj = 0, j = 1, . . . , N, (23)

where D is a SBP difference operator. With entropy split scheme, we will
always mean the entropy split form of the equations (17) discretized in space
by a summation-by-parts finite difference operator. The flux Jacobian ma-
trix with respect to the entropy variables, fv, is symmetric. The SBP scalar
product is denoted by

(u,v)h = ∆x

N∑
j=1

ωju
T
j vj ,

where ωj > 0 are weights that are different from 1 only at a few points near
the boundaries. The operator D satisfies the SBP property

(Du,v)h = −(u, Dv)h − uT1 v1 + uTNvN , (24)

but is otherwise arbitrary. In the most common case D is a standard SBP
centered difference operator, but other operators are possible. For example, D
could be a bandwidth optimized operator with SBP closure such as developed
in [11].

A zero velocity, u1 = 0, uN = 0, boundary condition is enforced, corre-
sponding to wall boundaries. Thanks to the SBP property of the difference
approximation the derivation of entropy conservation for the continuous prob-
lem can be carried over to the discretization.

Theorem 1. The approximation (23) together with the boundary conditions
u1 = 0 and uN = 0 conserve the global entropy in the sense that

d

dt

N∑
j=1

ωjEj = 0.

Proof. Denote

r = − β

β + 1
(v, Df)h −

1

β + 1
(v, (fv)Dv)h.

The scheme (23) can be written
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d

dt
qj = Prj , (25)

where the projection P sets u1 = 0 and uN = 0. Because P 2 = P , applying
P to both sides of (25) gives that

d

dt
Pq =

d

dt
q,

i.e., that Pq = q if the initial data satisfy the boundary conditions. For the
entropy

d

dt
E = (v,qt)h = (v, Pr)h = (v, r)h − (v, (I − P )r)h =

(v, r)h − (Pv, (I − P )r)h = (v, r)h, (26)

where we use that Pv = v, because the second component of v is zero when
the x-velocity, u, is zero, and the orthogonality (Pv, (I − P )r)h = 0. The
entropy equation is now of the same form as for the continuous problem, and
the same technique as used in (18), but with integration-by-parts replaced
by summation-by-parts gives

d

dt
E(qj) = −FN + F1.

Entropy conservation follows by observing that F = uE, so that the boundary
conditions imply that F1 = FN = 0.

If the boundary conditions are periodic, no SBP modification of the differ-
ence operator is needed. Entropy conservation is proved with periodic bound-
ary conditions by direct application of the same technique as above.
Remark The result in Lemma 2 carries over directly to the semi-discrete
approximation, since only time derivatives are used in the proof. Hence, the
L2-like estimate

d

dt

N∑
j=1

ωjvj(Eq,q)−1j vj = 0

is obtained for the approximation (23).

6 Comparison between the entropy split scheme and
Tadmor-type entropy conserving schemes

This section reviews entropy conserving schemes on conservative form and
discusses the differences between these schemes and the entropy split approx-
imation (23).
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Entropy conserving schemes are written in conservative form

d

dt
qj(t) +

1

∆x
(hECj+1/2 − hECj−1/2) = 0 j = 1, . . . , N, (27)

where hECj+1/2 are numerical flux functions. A second order accurate entropy
conservative scheme was developed by E. Tadmor in the 1980s, using a two
point numerical flux function,

hECj+1/2 = hEC(qj+1,qj).

Tadmor showed that if the flux is defined such that the property

(vj+1 − vj)
ThEC(qj+1,qj) = ψj+1 − ψj (28)

holds, then (27) implies the local entropy conservation (6), and thereby also
global entropy conservation (3); see [30]. Tadmor’s scheme is second order
accurate and is defined for periodic boundary conditions only. The entropy
flux potential, ψ in (28), is defined by

ψ = vT f − F. (29)

Generalization to arbitrary order was done in [14]. In fact, any centered
approximation of the form

Dfj =
1

∆x

p∑
k=1

αk(fj+k − fj−k) (30)

can be used as a template for a corresponding entropy conserving scheme.
This is done by writing

Dfj =
1

∆x

p∑
k=1

αk(fj+k + fj − (fj−k + fj))

and since (fj+k + fj)/2 has the form of a second order centered flux, it is
replaced by the second order accurate entropy conservative flux function to
define the general entropy conservative scheme as,

d

dt
qj(t) +

1

∆x

p∑
k=1

2αk(hEC(qj+k,qj)− hEC(qj ,qj−k)) = 0. (31)

This is not explicitly in conservative form, but it is straightforward to rewrite
(31) as a flux difference; see, e.g., [22].

In the case of periodic boundaries it is was shown in [14] (see also [28]
and [22]) that the order of accuracy of (31) is the same as the accuracy of
the linear operator (30), and that entropy conservation follows by using the
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property (28). The local entropy conservation (6) also holds for (31). For
details see the cited references.

A boundary modification of the entropy conserving scheme (31) was de-
veloped in [4]. The boundary modification is designed such that the scheme
satisfies entropy conservation with boundary fluxes (4). The boundary mod-
ification is based on exactly the same idea as used to define (31), but the
template operator is a matrix where boundary operators are included. The
general linear difference operator is a matrix ∆xD = (αjk), approximating
the derivative fx at the point j,

(Df)j =
1

∆x

N∑
k=1

αj,kfk, j = 1, . . . , N,

where
∑N
k=1 αj,k = 0, meaning that derivatives of constants are exactly zero.

An entropy conserving scheme corresponding to this operator is defined by

d

dt
qj(t) +

1

∆x

N∑
k=1

2αj,kh
EC(qk,qj) = 0, j = 1, . . . , N. (32)

In the standard case D is a fixed centered operator of the form (30) away from
boundaries, and has SBP modified operators near the domain boundaries. For
that case, the scheme (32) is identical to (31) away from boundaries.

It is straightforward to derive the discrete entropy conservation law

d

dt
Ej(t) +

1

∆x

N∑
k=1

2αj,kH(qk,qj) = 0, j = 1, . . . , N (33)

from (32). The numerical entropy flux is defined by

H(qk,qj) = −1

2
(ψj + ψk) +

1

2
(vj + vk)ThEC(qk,qj), (34)

which is consistent with the entropy flux,

H(q,q) = ψ + vTh(q,q) = ψ + vT f(q) = F (q).

To derive (33), multiply (32) by vj , and rewrite
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αj,kv
T
j h

EC(qk,qj)

=
∑
k

αj,k

(
1

2
(vj − vk)ThEC(qk,qj) +

1

2
(vj + vk)ThEC(qk,qj)

)
=
∑
k

αj,k

(
1

2
(ψj − ψk) +

1

2
(vj + vk)ThEC(qk,qj)

)
=
∑
k

αj,k

(
−1

2
(ψj + ψk) +

1

2
(vj + vk)ThEC(qk,qj)

)
, (35)

where the last equality follows from
∑
k αj,k = 0. By making the definition

(34), (33) follows. The discrete equations (32) and (33) are not explicitly in
conservative form, but their spatial derivatives are straightforward to rewrite
as numerical flux differences.

The following theorem summarizes results from [4] and [17].

Theorem 2. Let D = (αj,k) be a SBP operator, i.e., satsifying (24), and
let hEC be a second order accurate two point flux satisfying (28). Then the
scheme (32) satisfies global entropy conservation with boundary fluxes (4).
Moreover, the order of accuracy of (32) is the same as the order of accuracy
of D.

Next we give a proof of the entropy conservation property using a different
notation from [4].

The global conservation (4) follows by using the SBP property (24). In
matrix form (24) can be written

WD = −DTW +B, (36)

whereW is the diagonal matrix of norm weights,W = ∆x diag(ω1, ω2, . . . , ωN ),
and D is the SBP operator, and B is the matrix of boundary terms,
B1,1 = −1, BN,N = 1. The remaining elements of B are zero. Define the
matrix scalar product between two N ×N matrices,

A�B =

N∑
i=1

N∑
j=1

ai,jbi,j .

Then, for any N ×N matrix X (36) gives

(WD)�X = −(DTW )�X +B �X,

which, since AT �BT = A�B, can be written

(WD)�X = −(WD)�XT +B �X. (37)

We will call (37) generalized summation-by-parts identity, since it generalizes
(24) in the sense that (37) becomes (24) for the special case when X is the
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rank-1 matrix uvT for grid functions u and v. With the help of (37) we prove
that (33) implies the global conservation (4). Multiplying (33) by the norm
weights, ωj , and taking the sum over j, gives

∆x
d

dt

N∑
j=1

ωjEj(t) +

N∑
j=1

N∑
k=1

2ωjαj,kH(qk,qj) = 0.

The flux term can be expressed as

2(WD)�X

with Xj,k = H(qk,qj). It follows from the definition of H, (34), that X is a
symmetric matrix, and hence (37) gives that

2(WD)�X = B �X = H(qN ,qN )−H(q1,q1) = FN − F1,

and

∆x
d

dt

N∑
j=1

ωjEj(t) + FN − F1 = 0

follows.
Remark The entropy conservation proof above carries through also in the
case full norms, i.e., where W is symmetric positive definite, but not neces-
sarily diagonal.

Table 1 compares the entropy split scheme (23) and the entropy conserva-
tive scheme in conservation form. Both schemes (23) and (32) satisfy the same
properties. The entropy split scheme is simpler to define, since it does not
require any second order accurate flux hEC . The entropy conservative scheme
can be written in conservation form, which is advantageous when shocks are
present. However, since these schemes have no built-in dissipation, they are
not suited for shock wave computation.

Entropy split (23) Entropy cons. (32)
Requires SBP op. D SBP op. D and 2nd order EC flux hEC

Satisfies (4) (4)
Conservation form No Yes
Order of accuracy Given by D Given by D
Entropy Requires (9) (38) or (9)(shown below)

Table 1 Comparison between high order entropy split and high order Tadmor-type
entropy conservation schemes.

The exact construction of the second order accurate EC numerical flux,
which (32) requires, is dependent on the entropy used. For the Euler equations
there are two entropies that are considered.



16 Björn Sjögreen and H.C.Yee

1. The logarithmic entropy

E = −ρ log(pρ−γ) (38)

2. Harten’s entropies (9), which is a family of entropies, depending on a
parameter, α.

Most numerical fluxes, hEC , published to date use the logarithmic entropy
(38); see [10, 35, 25]. It will be shown in the next section that construction
of hEC is also possible for the entropies (9).

7 Tadmor-type Entropy Conservative Discretization
using the Harten entropy

This section derives an entropy conservative scheme for the entropy (9), by a
technique similar to the one used to derive an Tadmor-type of entropy con-
servative scheme for the logarithmic entropy in [35] for both the gas dynamics
and MHD.

The approximation will be in conservative form. In the one-dimensional
case, for example,

d

dt
qj +

1

∆x

(
hj+1/2 − hj−1/2

)
= 0. j = 1, . . . , N (39)

will approximate (16). The numerical flux function, hj+1/2 = h(qj+1,qj),
satisfies

(vj+1 − vj)
Thj+1/2 = ψj+1 − ψj , (40)

where ψ is the entropy flux potential,

ψ = vT f̂ − F̂ = s
1

α+γ ρû,

and where v denotes the entropy variables (10). The numerical flux hj+1/2

approximates the flux f̂ = k1f + k2g + k3h. Forward differencing is denoted
by ∆u = (uj+1−uj). It is well-known that (40) implies entropy conservation
of the corresponding semi-discrete numerical scheme; see [30].

In order to derive an entropy conservative scheme, we define the parameter
vector

z = (
ρ

p
(pρ−γ)

1
α+γ u v w p)T .

This definition leads to the following expressions for the entropy variables
(10) and entropy flux potential in terms of the components of z,
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v1 = −1

2
z1(z22 + z23 + z24)− α

γ − 1
z
− γα
1 z

− γ−1
α

5

v2 = z1z2 v3 = z1z3 v4 = z1z4

v5 = −z1
ψ = z1z5ẑ,

where ẑ = k1z2 + k2z3 + k3z4.
The average will be denoted by

{u} = (uj+1 + uj)/2,

and the exponential average will be denoted by

{uβ−1}e =
1

β

uβj+1 − u
β
j

uj+1 − uj
. (41)

Note that {uβ−1}e can be considered an average, since the right hand side
expression approximates uβ−1 when |uj+1 − uj | is small.
Remark To evaluate (41) when |uj+1 − uj | is close to zero we rewrite

1

β

uβj+1 − u
β
j

uj+1 − uj
= uβ−1j

1

β

rβ − 1

r − 1
,

where r = uj+1/uj , and approximate

1

β

rβ − 1

r − 1
≈ 1 +

1

2
(β − 1)(r − 1) +

1

6
(β − 1)(β − 2)(r − 1)2

for |r − 1| < 10−4. This will give a relative error ≈ 10−12.
For the derivation of the entropy conserving numerical fluxes, the following

formulas are used.

∆v1 = −{z1}({z2}∆z2 + {z3}∆z3 + {z4}∆z4)− 1

2
{z22 + z23 + z24}∆z1

− α

γ − 1
{z−γ/α1 }∆z−(γ−1)α5 − α

γ − 1
{z−(γ−1)α5 }∆z−γ/α1

= −{z1}({z2}∆z2 + {z3}∆z3 + {z4}∆z4)− 1

2
{z22 + z23 + z24}∆z1

− {z−γ/α1 }{z−(γ+α−1)/α5 }e∆z5 −
γ

γ − 1
{z−(γ−1)α5 }{z−(γ+α)/α1 }e∆z1

and
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∆v2 = {z2}∆z1 + {z1}∆z2, ∆v3 = {z3}∆z1 + {z1}∆z3,
∆v4 = {z4}∆z1 + {z1}∆z4, ∆v5 = −∆z5,
∆ψ = {z1ẑ}∆z5 + {z1}{z5}∆ẑ+{z5}{ẑ}∆z1.

Inserting this into (40) and solving for the numerical fluxes give

h1 =
{z1ẑ}

{z−γ/α1 }{z(1−γ−α)/α5 }e
h2 = {z2}h1 + k1{z5}
h3 = {z3}h1 + k2{z5}
h4 = {z4}h1 + k3{z5}

with energy flux

h5 = h1(
γ

γ − 1
{z−(γ−1)/α5 }{z−(γ+α)/α1 }e + {z2}2 + {z3}2 + {z4}2−

1

2
{z22 + z23 + z24}). (42)

Rewritten in terms of physical variables (and z1) the numerical fluxes become

h1 =
{z1û}

{z−γ/α1 }{ρ−1z1+
γ
α

1 }e
) (43)

h2 = h1{u}+ k1{p} (44)

h3 = h1{v}+ k2{p} (45)

h4 = h1{w}+ k3{p} (46)

and

h5 = h1(
γ

γ − 1
{p−(γ−1)/α}{ρ−1p1+

γ−1
α }e

+ {u}2 + {v}2 + {w}2 − 1

2
{u2 + v2 + w2}). (47)

In summary, the numerical flux function hj+1/2 formed by the five vector
components (43)–(47) gives an entropy conserving numerical flux that con-
serves the entropy (9) when used in a semi-discrete scheme. For the one
dimensional case (39) the direction vector is (k1 k2 k3) = (1 0 0).

As can be seen, the derivation using the entropies (9) to construct entropy
conserving schemes follows naturally the steps in [25]. It is about twice more
CPU intensive than the entropy split scheme for the same central spatial
discretization.



Title Suppressed Due to Excessive Length 19

8 Treating flows with discontinuities

A scheme with conservation of entropy is not sufficient to obtain a physically
relevant solution when shock waves are present. In order to compute flows
with shock waves, entropy conserving schemes must be augmented with nu-
merical dissipation that decreases the entropy across shock waves. We next
review some existing methods to combine entropy conservation with shock
capturing schemes. See [1] for an overview and a discusion of the entropy
viscosity method for nonlinear conservation equations.

One approach to shock wave computation is to define a shock capturing
method directly in entropy variables. For example, Ismail and Roe in [10]
define a Roe-type Riemann solver in entropy variables. Similarly, in [5] an
ENO scheme is defined in entropy variables. It would have been possible to
add dissipation defined in the entropy variables directly to the entropy split
scheme (23) to define a shock capturing variant of the scheme with guaranteed
entropy dissipation. This is outside the scope of the current article, but an
interesting subject for future work.

Another approach to shock wave computing with entropy dissipation is
taken in [4], where a WENO scheme is used together with an entropy limiter.
We here review how this is done. By a simple modification of the results in
Section 6, one can show that if the relation (28) holds with inequality,

(vj+1 − vj)
ThEC(qj+1,qj) ≥ ψj+1 − ψj , (48)

then the entropy inequality (5) follows. This is used in [4] for flux comparison.
It follows from equations (28) and (48) that if

(vj+1 − vj)
T (hecj+1/2 − hj+1/2) ≤ 0, (49)

with hecj+1/2 the numerical flux of an entropy conserving scheme, then the

entropy computed using the flux hj+1/2 will decrease. Whenever (49) is not
satisfied by the WENO flux, the weight, wj+1/2, in the hybrid flux

hECWENO
j+1/2 = wj+1/2h

ec
j+1/2 − (1− wj+1/2)hWENO

j+1/2

is determined such that (49) holds, and the hybrid flux hECWENO
j+1/2 is used

instead of the WENO flux hWENO
j+1/2 . Obviously, there always exists such a

weight, since taking wj+1/2 = 1 gives entropy conservation. See [4] for the
exact formula for wj+1/2.

Our treatment for flows containing discontinuities by the entropy split
scheme is by the Yee et al. nonlinear filter approach [36, 37, 38, 39, 25, 24].
The nonlinear filter approach consists of the dissipative portion of one’s fa-
vorite high order shock-capturing method. After each full time step of the
entropy split method, at each grid point a local flow sensor is employed to
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analyze the regularity of the computed flow data. Only strong discontinuity
locations would receive the full amount of shock-capturing dissipation. In
smooth regions no shock-capturing dissipation would be added, unless high
frequency oscillations are developed due to the possibility of numerical in-
stabilities from long time integration of the nonlinear governing equations.
In regions with strong turbulence, if needed, a small fraction of the shock-
capturing dissipation would be added to improve stability. These nonlinear
filter approaches require one Riemann solver per time step per grid point for
each spatial direction, independent of time discretization used in the entropy
split scheme step.

The numerical experiments for shock wave computation here are to filter
the computed solution after each time step with the dissipative portion of
high order WENO scheme. The nonlinear filter can be applied together with
either entropy split or entropy conserving methods on conservative form. The
dissipation operator by itself is not guaranteed to decrease the entropy if a
standard WENO dissipation is used. However, the dissipation is multiplied
by a sensor that detects discontinuities and switches off the dissipation away
from discontinuities. In this way the entropy conservation still holds locally
where the solution is smooth. At the same time the WENO dissipation is ac-
tive at discontinuities. We conjecture that it decreases the entropy at shock
waves. Because the filter is applied after each completion of a full time step,
the nonlinear filter approach cannot be written as a semi-discrete approxi-
mation. This makes a complete entropy analysis more difficult, since existing
results from semi-discrete methods can not be used directly.

Due to our adaptive flow sensor to control the location and amount of
numerical dissipation where needed, the dissipative portion of the high order
shock-capturing scheme is only utilized at isolated computational regions,
while maintaining high accuracy and entropy conservation/stability almost
everywhere else. Our numerical experiments only considered less the CPU in-
tensive dissipative portion of high resolution shock-capturing schemes as can-
didates for our nonlinear filter approach. Although the dissipative portion of
optimized high order WENO, ENO, compact WENO, or another more CPU
intensive high-resolution shocking-capturing scheme fits in the framework of
our nonlinear filter scheme framework, due to the CPU intensive nature of
these schemes, they are not considered in our numerical experiments. In addi-
tion, shock-capturing schemes that concentrate on capturing discontinuities
with a narrowest grid stencil are usually designed for rapidly developing flows.
Often, for a long time integration of DNS and LES type of flows, other added
mechanisms are needed to improve nonlinear stability.
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9 Numerical Experiments

Previous studies using SBP boundary closures for non-periodic boundary
conditions can be found in [37]. Here three standard long time integration
test cases for a 2D smooth flow and two DNS computations are presented.

9.1 Test Case 1: 2D Compressible Euler Simulation of
Smooth Flow: Isentropic Vortex Convection

The compressible Euler equations in two space dimensions are solved with
initial data

ρ(x, y) = (1− (γ − 1)β2

8γπ2
e1−r

2

)
1

γ−1 (50)

u(x, y) = u∞ −
β(y − y0)

2π
e(1−r

2)/2 (51)

v(x, y) = v∞ +
β(x− x0)

2π
e(1−r

2)/2 (52)

p(x, y) = ρ(x, y)γ , (53)

where r2 = x2 + y2, β = 5, γ = 1.4, u∞ = 1, and v∞ = 0. The exact solution
is the initial data translated, u(x, t) = u0(x− u∞t, y − v∞t).

The computational domain is 0 ≤ x ≤ 18, 0 ≤ y ≤ 18 with periodic
boundary conditions. The center of the vortex is chosen to be (x0, y0) =
(9, 9). The problem is solved in time with the classical fourth-order accurate
explicit Runge-Kutta method (RK4) to time t = 72, which corresponds to
four revolutions of the vortex across the domain.

Comparisons of high order classical central split schemes with high order
DRP schemes with grid refinements are reported in [23]. Three levels of grid
refinement were perform. Only one grid with maximum and L2 error norms
is compared with the exact solution shown in Fig. 1. Here C08-DS repre-
sents eighth-order central differencing applied to the Ducros et al. splitting
form of the Euler flux derivatives. The corresponding eighth-order entropy
splitting, entropy conservative method and Kennedy & Grubber splitting are
indicated by ”C08-ES”, ”C08-EC” and ”C08-KGS”. If the computed solu-
tions by ”C08-DS”, ”C08-ES”, ”C08-EC” and ”C08-KGS” are nonlinearly
filtered by a dissipative portion of WENO7 (seventh-order weighted essen-
tially nonoscillatory spatial method) with an adaptive flow sensor, they are in-
dicated by C08-DS+WENO7FI, C08-ES+WENO7FI, C08-EC+WENO7FI,
and C08-KGS+WENO7FI [36, 37, 38, 39, 25, 24]. For this smooth flow with-
out any turbulent structure, β = 1 for the entropy split scheme. The β
parameter studies are reported in [37, 19]. In general, for compressible shock-
free turbulence and turbulence with shocklets, β lies somewhere in the range



22 Björn Sjögreen and H.C.Yee

1.5 < β < 2.5. In general, the optimal β is problem dependent. A general
conclusion is that β should not be very large or very small.

Other high resolution dissipative shock-capturing methods are also can-
didates for the nonlinear filter approach as well as other optimal WENO or
ENO methods. However, with good control of the numerical dissipation away
from discontinuities, there is no need to use the more complicated and more
CPU intensive shock-capturing methods.

The non-split C08 without any added numerical dissipation diverges
shortly after time evolution. Results by WENO5 or WENO7 are very dif-
fusive with large maximum or L2 errors.

Fig. 1 Inviscid 2D compressible vortex convection with 1002 grid points: Comparison
of maximum-norm of error vs. time for C08-DS, C08-ES, C08-EC, and C08-KGS (left,
top), and C08-DS+WENO7FI, C08-ES+WENO7FI, C08-EC+WENO7FI, and C08-
KGS+WENO7fFI (right top). Bottom left and bottom right are the corresponding
L2-norm of error vs. time.

For this smooth flow integrated over a long time to observe nonlinear
stability and accuracy among the four methods, the entropy split scheme is
the most accurate method.
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Execution times for the base schemes used in the numerical experiments
for the 100 × 100 grid were measured. The eighth-order schemes were run
for 50 time steps on a single core of an Intel i7 processor. Times shown in
the table are normalized with the time of C08-DS, which gave the fastest
execution. In general, execution times depend on exactly how the code is
written, on compiler and compiler settings used, and on the properties of
the hardware. Using our non-optimized 3D code, the results are presented in
Table 9.1 below.

The results in Table 9.1 is just one example of performance.

Method Relative execution time
C08-DS 1.00
C08-ES 1.43
C08-EC 2.80
C08-KGS 1.50

Table 2 Execution times for base schemes.

9.2 Test Case 2: Inviscid 3D Taylor-Green Vortex

The Taylor-Green vortex [32] is a well-known shock-free compressible turbu-
lence test problem that has been studied extensively. The 3D Euler equations
of compressible gas dynamics are solved with γ = 5/3. The computational do-
main is a cube with sides of length 2π and with periodic boundary conditions
in all three directions. The initial data are

ρ = 1 p = 100 + {[cos(2z) + 2)(cos(2x) + cos(2y)]− 2} /16 (54)

u = sinx cos y cos z, v = − cosx sin y cos z, w = 0. (55)

The problem is solved to time 10 using a uniform grid of 643 points. The
solution develops smaller scales as time evolves. The increase of enstrophy
with time, as seen in Fig. 2 (left subplot), is an indication of the growth
rate of small scales. The figure compares results by the eight-order accurate
entropy split scheme (23) (generalized to three space dimensions), denoted
by C08ES, for values of the entropy parameter from β = 0.5 to β = 4.5
in steps of 0.5. Figure 2 shows that the choice of β has a large effect on
the stability of the scheme. Out of the values tried, β = 2 gives the smallest
enstropy growth. The time integration was made by RK4, using CFL number
0.85. Figure 3 shows the enstropy evolution with a larger range on the y-
axis. The computation breaks down and does not reach the final time for
β = 0.5, 1.0, 4.0, and 4.5. The values β = 1.5, 2.0, 2.5, 3.0 and 3.5 all produce
a bounded solution up to the final time. The evolution of the kinetic energy,
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Fig. 2 3D Taylor-Green vortex with 643 grid points. Evolution of enstrophy (left) and
kinetic energy (right), for different values of parameter β. Eighth-order discretization.

Fig. 3 3D Taylor-Green vortex: Enstropy vs. time, same as left subfigure of Fig. 2
but with larger range on the y-axis.

shown in the right subplot of Fig. 2, shows that of the values tried, only β = 2
gives a decreasing kinetic energy. All other values lead to some growth.

Figure 4 shows the same computations as Fig. 2, but with spatial dis-
cretization by the tenth-order accurate entropy split scheme. The enstrophy
increases somewhat faster for 10th-order discretization compared with the
eight-order results in Fig. 2. This can be seen from detailed study of the
intersection between the enstrophy curves and the line t = 10 or y = 120.

Figure 5 compares the enstrophy (left subplot) and kinetic energy (right
subplot) computed by the non-linear filter schemes, where the base scheme is
either entropy split, using β = 2, and order of accuracy eight (C08-ES) or ten
(C10-ES), or an entropy conserving method of order of accuracy eight (C08-
EC) or ten (C10-EC). The entropy conservative method is in conservation
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Fig. 4 3D Taylor-Green vortex with 643 grid points: Evaluation of enstrophy (left)
and kinetic energy (right), for different values of parameter β. Tenth-order discretiza-
tion.

form and uses the entropy − ρ
γ−1 ln(pρ−γ); see [25] for a detailed description.

The nonlinear filter uses dissipation from the seventh-order WENO method
(WENO7FI) together with eighth-order base schemes, and dissipation from
the ninth-order WENO method (WENO9FI) together with tenth-order base
schemes. The exact kinetic energy ”Ekin” solution for this flow is unity.

Fig. 5 3D Taylor-Green vortex with 643 grid points: Evolution of enstrophy (left) and
kinetic energy (right). Methods are C08-ES+WENO7FI (blue), C08-EC+WENO7FI
(red), C10-ES+WENO9FI (cyan), and C10-EC+WENO9FI (magenta).

9.3 Test Case 3: 3D Isotropic Turbulence with Eddy
Shocklets

The third numerical test problem computes decaying compressible isotropic
turbulence with eddy shocklets. For high enough turbulent Mach numbers,
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weak shocks (shocklets) develop from the turbulent motion. In this test the
initial turbulent Mach number is 0.6. The Navier-Stokes equations are solved
using γ = 1.4. The computational domain is a cube with side length 2π and
periodic boundary conditions in all three directions. The initial datum is a
random divergent free velocity field, ui,0, i = 1, 2, 3, that satisfies

3

2
u2rms,0 =

1

2
〈ui,0, ui,0〉 =

∫ ∞
0

E(k) dk,

with energy spectrum

E(k) ∼ k4e−2(k/k0)
2

.

The computations were made with urms,0 = 1 and k0 = 4. The angular
brackets denote averaging over the entire computational domain. The density
and pressure fields are initially constant. The Taylor-scale Reynolds number,
Reλ,0, is 100. See [13] for definitions of the quantities and more details about
the set up of the problem. The simulation is run to the final time 4.

Fig. 6 3D Isotropic turbulence with 643 grid points. Eight order accurate entropy
split method. Evolution of kinetic energy (upper left), enstrophy (upper right), tem-
perature variance (lower left), and dilatation (lower right) for different values of pa-
rameter β. Reference computed on 2563 grid points and filtered down to 643 resolu-
tion.

Figure 6 shows the time evolution of the domain-averaged kinetic energy
(upper left), enstrophy (upper right), temperature variance (lower left), and
dilatation (lower right). Results with different values of the entropy splitting
parameter β are shown in different colors. The computations were done on
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a grid with a coarse DNS grid of 643 points, using C08ES as spatial dis-
cretization and RK4 in time. The coarse grid DNS solutions are compared
with the reference DNS solution using a 2563 grid filtered down to the 643

grid. The figure shows that there is no single value of β that is optimal for all
four quantities plotted, but that β ≈ 2 seems to be a good choice for overall
accuracy.

The computed quantities in Fig. 6 that involve derivatives (enstrophy and
dilitation) are visibly larger than the reference solution. In order to suppress
unphysical oscillations, which are the likely reason for this behavior, Fig. 7
shows the same computations as in Fig. 6, but with a non-linear filter postpro-
cessing the solution after each time step. The WENO7 filter using a wavelet
sensor with κ = 0.4, developed in [20], was used.

Fig. 7 3D Isotropic turbulence with 643 grid points: Same computation as in Fig. 6,
but with WENO7FI postprocessing the solution after each time step.

Figure 7 shows that the filtered solution conforms better to the reference
solution, and that values around β = 2 perform well. All are in the presence
of the WENO7 filter.

The computations in Fig. 6 are repeated, but with order of accuracy ten in
Fig. 9. Similarly, Fig. 10 shows the tenth-order solution nonlinearly filtered
after each time step with the dissipative part of the WENO9 scheme. The
computation used the same flow sensor as used for the computation in Fig. 7.

Finally, Fig. 8 gives a comparison between the tenth-order entropy split
scheme with β = 2 (red color) and the tenth-order entropy conservative
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Fig. 8 3D Isotropic turbulence with 643 grid points: Comparison C10-
ES+WENO9FI (red) and C10-EC+WENO9FI (blue).

Fig. 9 3D Isotropic turbulence with 643 grid points: Same computation as in Fig. 6,
but with tenth-order of accuracy.
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Fig. 10 3D Isotropic turbulence problem with 643 grid points: Same computation
as in Fig. 9, but with WENO9FI postprocessing the solution after each time step.

scheme (blue color). The entropy conservative scheme is in conservation form
and uses the entropy − ρ

γ−1 ln(pρ−γ); see [25] for a detailed description. The

two solutions (entropy split and entropy conservative) in Fig. 8 are very close;
it is hard to distinguish them in the figure.

The computations in Fig. 6 are repeated, but with order of accuracy ten in
Fig. 9. Similarly, Fig. 10 shows the tenth-order solution nonlinearly filtered
after each time step with the dissipative part of the WENO9 scheme. The
computation used the same flow sensor as used for the computation in Fig. 7.

Figure 11 shows the comparison of two splitting methods (DS and KGS),
ES (entropy splitting & entropy stable) and EC (entropy conservative) using
the same nonlinear filter. The time evolutions of the domain averaged kinetic
energy (upper left), enstrophy (upper right), temperature variance (lower
left), and dilatation (lower right) are compared. All four forms of the non-
linear filter method provide similar resolution. All four schemes without the
nonlinear filter are stable but not as accurate as the nonlinear filter versions.

Over all, DS splitting is slightly less CPU intensive than ES. KGS skew-
symmetric splitting is more CPU intensive than DS and ES. The EC method
is around two times more expensive than DS. In addition, as the order of
these methods increases, the gain in efficiency (CPU) of entropy split schemes
increases.
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Fig. 11 3D Isotropic turbulence problem with 643 grid points. Comparison of two
splitting methods (DS and KGS), ES (entropy splitting & entropy stable) and EC
(entropy conservative) using the same nonlinear filter. Evolution of kinetic energy
(upper left), enstrophy (upper right), temperature variance (lower left), and dilatation
(lower right). DNS computed on 2563 grid points and filtered down to 643 resolution
is considered as the reference solution.

10 Conclusions

This paper revisits entropy split schemes for compressible gas dynamics and
shows (in the current terminology) that entropy split schemes are entropy
stable for high order spatial central schemes. Although entropy split meth-
ods are not in conservation form, Section 9 showed that they perform well
on problems with shocklets with no indication of wrong shock speed. Over
all, the Tadmor-type entropy conservative method of comparable order is ap-
proximately two times more CPU intensive than the entropy split scheme.
In addition, as the order of these methods increases, the gain in efficiency
(CPU) by entropy split schemes increases.

The entropy split scheme has been generalized from perfect gas to ther-
mally perfect gas and gas flows consist of a linear combination of perfect
gases [34, 37]. These high order schemes have been formulated in time vary-
ing deforming curvilinear grids with free-stream preservation [34, 21]. It is
noted that the Hughes et al. formulation [9] using the Harten’s idea [8] but
solving the flow equations in nonconservative form in terms of the entropy
variables is completely different from the entropy split schemes. The entropy
split schemes solve the entropy splitting form of the Euler flux derivatives
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consisting of a conservative and a non-conservative portion in terms of the
entropy variables.

A natural extension of the entropy split scheme would be to define it
for the logarithmic entropy E = −ρ log(pρ−γ). This cannot be done by the
technique described here since the logarithmic entropy does not satisfy the
homogeneity property (11). It is noted that it would be interesting, but is
not possible by the straightforward type of entropy splitting described here
for the ideal MHD. Although the entropy (9) is a valid entropy for MHD, the
corresponding entropy variables do not satisfy the homogeneity (11) property.
A completely different type of entropy split method that does not rely on
homogeneity would be needed to treat these two cases.

The use of the Harten entropies (9) to construct Tadmor-type of entropy
conserving schemes in conservative form is also shown for both gas dynamics
and MHD by using the same technique as used for the logarithmic entropy
in [35, 25]. The CPU for the resulting entropy conserving scheme would be
similar to the logarithmic entropy in [25]. As can be seen, the derivation using
the entropies (9) to construct entropy conserving schemes follows naturally
the steps in [25]. It is about twice more CPU intensive than the entropy split
scheme for the same central spatial discretization.
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32 Björn Sjögreen and H.C.Yee

7. Gerritsen, M, Olsson, P.: Designing an efficient solution strategy for fluid flows.
I. A stable high order finite difference scheme and sharp shock resolution for the
Euler equations. J. Comput. Phys. 129, 245–262 (1996).

8. Harten, A: On the symmetric form of systems for conservation laws with entropy:
J. Comput Phys. 49, 151 (1983).

9. Hughes, T., Franca, L., and Mallet, M.: A new finite element formulation for
computational fluid dynamics: K. Symmetric forms of the compressible Euler
and Navier-Stokes equations and the second law of thermodynamics, Computer
Methods in Applied Mechanics and Engineering, 54, 223-234 (1986).

10. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: En-
tropy production at shocks. J. Comput Phys. 228, 5410–5436 (2009).

11. Johansson, S.: High Order Summation by Parts Operator Based on a DRP
Scheme Applied to 2D, Technical Report 2004-050, Uppsala University, Sweden.

12. Kennedy, C.A. and Gruber, A.: Reduced Aliasing Formulations of the convective
Terms Within the Navier-Stokes Equations. J. Comput. Phys., 227 1676-1700
(2008).

13. Kotov, D.V., Yee, H.C., Wray, A.A., Sjögreen, B., Kritsuk, A.G.: Numerical
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21. Sjögreen, B., Yee, H.C., Vinokur, M.: On High Order Finite-Difference Metric
Discretizations Satisfying GCL on Moving and Deforming Grids, J. comput.
Phys., 265 211-220 (2014).
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39. Yee, H. C., Sjögreen, B.: High Order Filter Methods for Wide Range of Compress-
ible flow Speeds. Proceedings of the ICOSAHOM09, June 22-26, 2009, Trond-
heim, Norway.


